A list of Formulae and equations widely used

Mechanics
velocity
 = Δs
Δt
v = ds
dt
acceleration
 = Δv
Δt
a = dv
dt
equations of motion
v = v0 + at
s = s0 + v0t + ½at2
v2 = v02 + 2a(s − s0)
 = ½(v + v0)
newton's 2nd law
F = ma
F = dp
dt
weight
W = mg
dry friction
fs ≤ μsN
fk = μkN
centripetal accel.
ac = v2
r
ac = − ω2r
momentum
p = mv
impulse
J = Δt
J = 
F dt
impulse-momentum
Δt = mΔv

F dt = Δp
work
W = Δs cos θ
W = 
F · ds
work-energy
Δs cos θ = ΔE

F · ds = ΔE
kinetic energy
K = ½mv2
K = p2
2m
general p.e.
ΔU = − 
F · ds
F = − ∇U
gravitational p.e.
ΔUg = mgΔh
efficiency
η = Wout
Ein
power
 = ΔW
Δt
P = dW
dt
power-velocity
P = Fv cos θ
P = F · v
angular velocity
ω̅ = Δθ
Δt
ω = dθ
dt
v = ω × r
angular acceleration
α̅ = Δω
Δt
α = dω
dt
a = α × r − ω2 r
equations of rotation
ω = ω0 + αt
θ = θ0 + ω0t + ½αt2
ω2 = ω02 + 2α(θ − θ0)
ω̅ = ½(ω + ω0)
torque
τ = rF sin θ
τ = r × F
2nd law for rotation
τ = Iα
τ = dL
dt
moment of inertia
I = ∑mr2
I = 
 r2 dm
rotational work
W = τ̅Δθ
W = 
 τ · dθ
rotational power
P = τω cos θ
P = τ · ω
rotational k.e.
K = ½Iω2
angular momentum
L = mrv sin θ
L = r × p
L = Iω
universal gravitation
Fg = − Gm1m2 
r2
gravitational field
g = − Gm 
r2
gravitational p.e.
Ug = − Gm1m2
r
gravitational potential
Vg = − Gm
r
orbital speed
v = √Gm
r
escape speed
v = √2Gm
r
hooke's law
F = − kΔx
elastic p.e.
Us = ½kΔx2
s.h.o.
T = 2π √m
k
simple pendulum
T = 2π √
g
frequency
f = 1
T
angular frequency
ω = 2πf
density
ρ = m
V
pressure
P = F
A
pressure in a fluid
P = P0 + ρgh
buoyancy
B = ρgVdisplaced
mass flow rate
qm = m
t
volume flow rate
qV = V
t
mass continuity
ρ1A1v1 = ρ2A2v2
volume continuity
A1v1 = A2v2
bernoulli's equation
P1 + ρgy1 + ½ρv12 = P2 + ρgy2 + ½ρv22
dynamic viscosity
 = η Δvx
AΔz
F = η dvx
Adz
kinematic viscosity
ν = η
ρ
drag
R = ½ρCAv2
mach number
Ma = v
c
reynolds number
Re = ρvD
η
froude number
Fr = v
g
young's modulus
F = E Δℓ
A0
shear modulus
F = G Δx
Ay
bulk modulus
F = K ΔV
AV0
surface tension
γ = F

Thermal Physics

solid expansion
Δℓ = αℓ0ΔT
ΔA = 2αA0ΔT
ΔV = 3αV0ΔT
liquid expansion
ΔV = βV0ΔT
sensible heat
Q = mcΔT
latent heat
Q = mL
ideal gas law
PV = nRT
molecular constants
nR =Nk
maxwell-boltzmann
− mv2
p(v) = 4v2
m3/2
e2kT
√π2kT
molecular k.e.
K⟩ = 32kT
molecular speeds
vp = √2kT
m
v⟩ = √8kT
πm
vrms = √3kT
m
heat flow rate
Φ̅ = ΔQ
Δt
Φ = dQ
dt
thermal conduction
Φ = kAΔT
stefan-boltzmann law
Φ = εσA(T4 − T04)
wien displacement law
λmax = b
T
internal energy
ΔU = 32nRΔT
ΔU = 32NkΔT
thermodynamic work
W = −
P dV
1st law of thermo.
ΔU = Q + W
entropy
ΔS = ΔQ
T
S = k log w
efficiency
ηreal = 1 − QC
QH
ηideal = 1 − TC
TH
c.o.p.
COPreal = QC
QH − QC
COPideal = TC
TH − TC

Waves & Optics

periodic waves
v = fλ
frequency
f = 1
T
beat frequency
fbeat = fhigh − flow
intensity
I = P
A
intensity level
LI = 10 log
I
I0
pressure level
LP = 20 log
P
P0
interference fringes
nλ = d sin θ
nλ ≈ x
dL
index of refraction
n = c
v
snell's law
n1 sin θ1 = n2 sin θ2
critical angle
sin θc = n2
n1
image location
1 = 1 + 1
fdodi
image size
M = hi = di
hodo
spherical mirrors
f ≈ r
2

Electricity & Magnetism

coulomb's law
F = k q1q2
r2
F = 1 q1q2 
4πε0r2
electric field, def.
E = FE
q
electric potential, def.
ΔV = ΔUE
q
field & potential
 = − V
d
E = − ∇V
electric field
E = k ∑q 
r2
E = k 
dq 
r2
electric potential
V = k ∑q
r
V = k 
dq
r
capacitance
C = Q
V
plate capacitor
C = κε0A
d
cylindrical capacitor
C = 2πκε0
ln(b/a)
spherical capacitor
C = 4πκε0
(1/a) − (1/b)
capacitive p.e.
U = 1 CV2 = 1 Q2 = 1 QV
22C2
electric current
 = Δq
Δt
I = dq
dt
ohm's law
V = IR
E = ρJ
J = σE
resitivity-conductivity
ρ = 1
σ
electric resistance
R = ρℓ
A
electric power
P = VI = I2R = V2
R
resistors in series
Rs = ∑Ri
resistors in parallel
1 = ∑1
RpRi
capacitors in series
1 = ∑1
CsCi
capacitors in parallel
Cp = ∑Ci
magnetic force, charge 
FB = qvB sin θ
FB = qv × B
magnetic force, current
FB = IB sin θ
dFB = I d × B
biot-savart law
B = μ0I
ds × 
r2
solenoid
B = µ0nI
straight wire
B = μ0I
r
parallel wires
FB = μ0 I1I2
r
electric flux
ΦE = EA cos θ
ΦE = 
E · dA
magnetic flux
ΦB = BA cos θ
ΦB = 
B · dA
motional emf
ℰ = Bv
induced emf
ℰ̅ = − ΔΦB
Δt
ℰ = − dΦB
dt

gauss's law
E · dA = Q
ε0
∇ · E = ρ
ε0
no one's law
B · dA = 0 
 
∇ · B = 0
 
faraday's law
E · ds = − ∂ΦB
t
∇ × E = − B
t
ampere's law
B · ds = μ0ε0 ∂ΦE + μ0I
t
∇ × B = μ0ε0 E + μ0 J
t

Modern Physics

lorentz factor
γ = 1
√(1 − v2/c2)
time dilation
t' = t
√(1 − v2/c2)
t' = γt
length contraction
ℓ' = ℓ √(1 − v2/c2)
ℓ' = 
γ
relative velocity
u' = u + v
1 + uv/c2
relativistic energy
E = mc2
√(1 − v2/c2)
E = γmc2
relativistic momentum
p = mv
√(1 − v2/c2)
p = γmv
energy-momentum
E2 = p2c2 + m2c4
mass-energy
E = mc2
relativistic k.e.
K = 
1 − 1
mc2
√(1 − v2/c2)
K = (γ − 1)mc2
relativistic doppler effect
λ = f0 = √
1 + v/c
λ0f1 − v/c
photon energy
E = hf
E = pc
photon momentum
p = h
λ
p = E
c
photoelectric effect
Kmax = E − ϕ
Kmax = h(f − f0)
schroedinger's equation
iℏ  Ψ(r,t) = − 2 ∇2Ψ(r,t) + V(r)Ψ(r,t)
∂t2m
Eψ(r) = − 2 ∇2ψ(r) + V(r)ψ(r)
2m
uncertainty principle
ΔpxΔx ≥ ℏ 
2
ΔEΔt ≥ ℏ 
2
rydberg equation
1 = −R 
1 − 1
λn2n02
half life
N = N02t/T½
absorbed dose
D = E
m
effective dose
H = QD
Source: physics.info

Comments

Popular posts from this blog

What are some psychological facts that people don't know?

The Timeline to Discoveries of Sir Isaac Newton

How many solar panels are required to set up 1MW power plant?